STRONGLY DUO AND CO-MULTIPLICATION MODULES
author
Abstract:
Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In addition, if R is a Noetherian ring, then R is a strongly duoring if and only if R is a co-multiplication ring. We also show that J-semisimple strongly duorings are precisely semisimple rings. Moreover, if R is a perfect ring, then uniserial R-modules are co-multiplication of finite length modules. Finally, we showthat Abelian co-multiplication groups are reduced and co-multiplication Z-modules(Abeliangroups)are characterized.
similar resources
ON COMULTIPLICATION AND R-MULTIPLICATION MODULES
We state several conditions under which comultiplication and weak comultiplication modulesare cyclic and study strong comultiplication modules and comultiplication rings. In particular,we will show that every faithful weak comultiplication module having a maximal submoduleover a reduced ring with a finite indecomposable decomposition is cyclic. Also we show that if M is an strong comultiplicati...
full textStrongly noncosingular modules
An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...
full textStrongly cotop modules
In this paper, we introduce the dual notion of strongly top modules and study some of the basic properties of this class of modules.
full textA characterization of finitely generated multiplication modules
Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...
full textMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
full textMultiplication Modules and Homogeneous Idealization
All rings are commutative with identity and all modules are unital. Let R be a ring, M an R-module and R (M), the idealization of M . Homogeneous ideals of R (M) have the form I (+)N where I is an ideal of R, N a submodule of M and IM ⊆ N . The purpose of this paper is to investigate how properties of a homogeneous ideal I (+)N of R (M) are related to those of I and N . We show that if M is a m...
full textMy Resources
Journal title
volume 4 issue 1
pages 53- 64
publication date 2016-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023